Geometry-Experiment Algorithm for Steiner Minimal Tree Problem

نویسندگان

  • Zong-Xiao Yang
  • Xiao-Yao Jia
  • Jie-Yu Hao
  • Yanping Gao
چکیده

It is well known that the Steiner minimal tree problem is one of the classical nonlinear combinatorial optimization problems. A visualization experiment approach succeeds in generating Steiner points automatically and showing the system shortest path, named Steiner minimum tree, physically and intuitively. However, it is difficult to form stabilized system shortest path when the number of given points is increased and irregularly distributed. Two algorithms, geometry algorithm and geometry-experiment algorithm (GEA), are constructed to solve system shortest path using the property of Delaunay diagram and basic philosophy of Geo-Steiner algorithm and matching up with the visualization experiment approach (VEA) when the given points increase. The approximate optimizing results are received byGEA andVEA for two examples.The validity of GEAwas proved by solving practical problems in engineering, experiment, and comparative analysis. And the global shortest path can be obtained by GEA successfully with several actual calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Euclidean Steiner Tree Problem

The Euclidean Steiner tree problem is solved by finding the tree with minimal Euclidean length spanning a set of fixed vertices in the plane, while allowing for the addition of auxiliary vertices (Steiner vertices). Steiner trees are widely used to design real-world structures like highways and oil pipelines. Unfortunately, the Euclidean Steiner Tree Problem has shown to be NP-Hard, meaning the...

متن کامل

Parallel Greedy Adaptive Search Algorithm for Steiner Tree Problem

In this paper, a parallel algorithm for the Steiner tree problem is presented. The algorithm is based on the well-known multi-start paradigm the GRASP and the well-known proximity structures from computational geometry. The main contribution of this paper is the O(n log n+log n log( n log n )) parallel algorithm for computing Steiner tree on the Euclidean plane. The parallel algorithm used prox...

متن کامل

Thirty-five-point rectilinear steiner minimal trees in a day

Given a set of terminals in the plane, a rectilinear Steiner minimal tree is a shortest intercon-nection among these terminals using only horizontal and vertical edges. We present an algorithm that constructs a rectilinear Steiner minimal tree for any input terminal set. On a workstation, problems involving 20 input terminals can be solved in a few seconds, and problems involving 30 input termi...

متن کامل

Bounds on the quality of approximate solutions to the Group Steiner Problem

The Group Steiner Problem (GSP) is a generalized version of the well known Steiner Problem. For an undirected, connected distance graph with groups of required vertices and Steiner vertices, GSP asks for a shortest connected subgraph, containing at least one vertex of each group. As the Steiner Problem is NP-hard, GSP is too, and we are interested in approximation algorithms. EEcient approximat...

متن کامل

Concatenation - Based Greedy Heuristics for the Euclidean

We present a class of O(n log n) heuristics for the Steiner tree problem in the Euclidean plane. These heuristics identify a small number of subsets with few, geometrically close, terminals using minimum spanning trees and other well-known structures from computational geometry: De-launay triangulations, Gabriel graphs, relative neighbourhood graphs, and higher-order Voronoi diagrams. Full Stei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013